Markdown Basics
You can write regular markdown here and Jekyll will automatically convert it to a nice webpage. I strongly encourage you to take 5 minutes to learn how to write in markdown - it’ll teach you how to transform regular text into bold/italics/headings/tables/etc.
Here is some bold text
Here is a secondary heading
Here’s a useless table:
Number | Next number | Previous number |
---|---|---|
Five | Six | Four |
Ten | Eleven | Nine |
Seven | Eight | Six |
Two | Three | One |
How about a yummy crepe?
Code and Syntax highlighting
The following are two code samples using syntax highlighting.
The following is a code sample using triple backticks ( ``` ) code fencing provided in Hugo. This is client side highlighting and does not require any special installation.
var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2) // "+" means "add"
alert("Sum = " + sum) // "+" means combine into a string
The following is a code sample using the “highlight” shortcode provided in Hugo. This is server side highlighting and requires Python and Pygments to be installed.
var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2) // "+" means "add"
alert("Sum = " + sum) // "+" means combine into a string
And here is the same code with line numbers:
1 var num1, num2, sum
2 num1 = prompt("Enter first number")
3 num2 = prompt("Enter second number")
4 sum = parseInt(num1) + parseInt(num2) // "+" means "add"
5 alert("Sum = " + sum) // "+" means combine into a string
Math and KaTeX
KaTeX can be used to generate complex math formulas server-side.
$$ \phi = \frac{(1+\sqrt{5})}{2} = 1.6180339887\cdots $$
Additional details can be found on GitHub or on the Wiki.
To load KaTeX on markdown pages, add math: true
in front-matter of post. Read this post for more information
Example 1
If the text between $$ contains newlines it will rendered in display mode:
$$
f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi
$$
$$ f(x) = \int_{-\infty}^\infty\hat f(\xi),e^{2 \pi i \xi x},d\xi $$
Example 2
$$
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
$$
$$ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } $$
Example 3
$$
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.
$$
$$ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. $$