Markdown Basics

You can write regular markdown here and Jekyll will automatically convert it to a nice webpage. I strongly encourage you to take 5 minutes to learn how to write in markdown - it’ll teach you how to transform regular text into bold/italics/headings/tables/etc.

Here is some bold text

Here is a secondary heading

Here’s a useless table:

Number Next number Previous number
Five Six Four
Ten Eleven Nine
Seven Eight Six
Two Three One

How about a yummy crepe?

Crepe

Code and Syntax highlighting

The following are two code samples using syntax highlighting.

The following is a code sample using triple backticks ( ``` ) code fencing provided in Hugo. This is client side highlighting and does not require any special installation.

    var num1, num2, sum
    num1 = prompt("Enter first number")
    num2 = prompt("Enter second number")
    sum = parseInt(num1) + parseInt(num2) // "+" means "add"
    alert("Sum = " + sum)  // "+" means combine into a string

The following is a code sample using the “highlight” shortcode provided in Hugo. This is server side highlighting and requires Python and Pygments to be installed.

    var num1, num2, sum
    num1 = prompt("Enter first number")
    num2 = prompt("Enter second number")
    sum = parseInt(num1) + parseInt(num2) // "+" means "add"
    alert("Sum = " + sum)  // "+" means combine into a string

And here is the same code with line numbers:

1    var num1, num2, sum
2    num1 = prompt("Enter first number")
3    num2 = prompt("Enter second number")
4    sum = parseInt(num1) + parseInt(num2) // "+" means "add"
5    alert("Sum = " + sum)  // "+" means combine into a string

Math and KaTeX

KaTeX can be used to generate complex math formulas server-side.

$$ \phi = \frac{(1+\sqrt{5})}{2} = 1.6180339887\cdots $$

Additional details can be found on GitHub or on the Wiki.

To load KaTeX on markdown pages, add math: true in front-matter of post. Read this post for more information

Example 1

If the text between $$ contains newlines it will rendered in display mode:

$$
f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi
$$

$$ f(x) = \int_{-\infty}^\infty\hat f(\xi),e^{2 \pi i \xi x},d\xi $$

Example 2

$$
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
$$

​​$$ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } $$ ​​

Example 3

$$
1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.
$$

$$ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. $$